
2-1

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all IA-32 processors.

2.1. GENERAL INSTRUCTION FORMAT

All IA-32 instruction encodings are subsets of the general instruction format shown in Figure
2-1. Instructions consist of optional instruction prefixes (in any order), one or two primary
opcode bytes, an addressing-form specifier (if required) consisting of the ModR/M byte and
sometimes the SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate data
field (if required).

2.2. INSTRUCTION PREFIXES

The instruction prefixes are divided into four groups, each with a set of allowable prefix codes:

• Group 1

— Lock and repeat prefixes:

• F0H—LOCK.

• F2H—REPNE/REPNZ (used only with string instructions).

• F3H—REP or REPE/REPZ (use only with string instructions).

• Group 2

— Segment override prefixes:

• 2EH—CS segment override (use with any branch instruction is reserved).

Figure 2-1. IA-32 Instruction Format

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Mod R/MReg/
Opcode

027 6 5 3

Scale Base

027 6 5 3

Index

Immediate
data of

1, 2, or 4
bytes or none

Address
displacement
of 1, 2, or 4

bytes or none

1 byte
(if required)

1 byte
(if required)

1-, 2-, or 3-byte
opcode

Up to four
prefixes of

1-byte each
(optional)

2-2

INSTRUCTION FORMAT

• 36H—SS segment override prefix (use with any branch instruction is reserved).

• 3EH—DS segment override prefix (use with any branch instruction is reserved).

• 26H—ES segment override prefix (use with any branch instruction is reserved).

• 64H—FS segment override prefix (use with any branch instruction is reserved).

• 65H—GS segment override prefix (use with any branch instruction is reserved).

— Branch hints:

• 2EH—Branch not taken (used only with Jcc instructions).

• 3EH—Branch taken (used only with Jcc instructions).

• Group 3

— 66H—Operand-size override prefix.

• Group 4

— 67H—Address-size override prefix.

For each instruction, one prefix may be used from each of these groups and be placed in any
order. Using redundant prefixes (more than one prefix from a group) is reserved and may cause
unpredictable behavior.

The LOCK prefix forces an atomic operation to insure exclusive use of shared memory in a
multiprocessor environment. See “LOCK—Assert LOCK# Signal Prefix” in Chapter 3, Instruc-
tion Set Reference, for a detailed description of this prefix and the instructions with which it can
be used.

The repeat prefixes cause an instruction to be repeated for each element of a string. They can be
used only with the string instructions: MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS.
Use of the repeat prefixes with other IA-32 instructions is reserved and may cause unpredictable
behavior (see the note below).

The branch hint prefixes allow a program to give a hint to the processor about the most likely
code path that will be taken at a branch. These prefixes can only be used with the conditional
branch instructions (Jcc). Use of these prefixes with other IA-32 instructions is reserved and
may cause unpredictable behavior. The branch hint prefixes were introduced in the Pentium 4
and Intel Xeon processors as part of the SSE2 extensions.

The operand-size override prefix allows a program to switch between 16- and 32-bit operand
sizes. Either operand size can be the default. This prefix selects the non-default size. Use of this
prefix with MMX, SSE, and/or SSE2 instructions is reserved and may cause unpredictable
behavior (see the note below).

The address-size override prefix allows a program to switch between 16- and 32-bit addressing.
Either address size can be the default. This prefix selects the non-default size. Using this prefix
when the operands for an instruction do not reside in memory is reserved and may cause unpre-
dictable behavior.

2-3

INSTRUCTION FORMAT

NOTE

Some of the SSE and SSE2 instructions have three-byte opcodes. For these
three-byte opcodes, the third opcode byte may be F2H, F3H, or 66H. For
example, the SSE2 instruction CVTDQ2PD has the three-byte opcode F3 OF
E6. The third opcode byte of these three-byte opcodes should not be thought
of as a prefix, even though it has the same encoding as the operand size prefix
(66H) or one of the repeat prefixes (F2H and F3H). As described above,
using the operand size and repeat prefixes with SSE and SSE2 instructions is
reserved. It should also be noted that execution of SSE2 instructions on an
Intel processor that does not support SSE2 (CPUID Feature flag register EDX
bit 26 is clear) will result in unpredictable code execution.

2.3. OPCODE

The primary opcode is 1, 2, or 3 bytes. An additional 3-bit opcode field is sometimes encoded
in the ModR/M byte. Smaller encoding fields can be defined within the primary opcode. These
fields define the direction of the operation, the size of displacements, the register encoding,
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on
the class of operation.

2.4. MODR/M AND SIB BYTES

Most instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three
fields of information:

• The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

• The reg/opcode field specifies either a register number or three more bits of opcode infor-
mation. The purpose of the reg/opcode field is specified in the primary opcode.

• The r/m field can specify a register as an operand or can be combined with the mod field to
encode an addressing mode.

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully
specify the addressing form. The base-plus-index and scale-plus-index forms of 32-bit
addressing require the SIB byte. The SIB byte includes the following fields:

• The scale field specifies the scale factor.

• The index field specifies the register number of the index register.

• The base field specifies the register number of the base register.

See Section 2.6., “Addressing-Mode Encoding of ModR/M and SIB Bytes”, for the encodings
of the ModR/M and SIB bytes.

2-4

INSTRUCTION FORMAT

2.5. DISPLACEMENT AND IMMEDIATE BYTES

Some addressing forms include a displacement immediately following the ModR/M byte (or the
SIB byte if one is present). If a displacement is required, it can be 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2 or 4 bytes.

2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB
BYTES

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shown in
Tables 2-1 through 2-3. The 16-bit addressing forms specified by the ModR/M byte are in Table
2-1, and the 32-bit addressing forms specified by the ModR/M byte are in Table 2-2. Table 2-3
shows the 32-bit addressing forms specified by the SIB byte.

In Tables 2-1 and 2-2, the first column (labeled “Effective Address”) lists 32 different effective
addresses that can be assigned to one operand of an instruction by using the Mod and R/M fields
of the ModR/M byte. The first 24 effective addresses give the different ways of specifying a
memory location; the last eight (specified by the Mod field encoding 11B) give the ways of spec-
ifying the general-purpose, MMX, and XMM registers. Each of the register encodings list five
possible registers. For example, the first register-encoding (selected by the R/M field encoding
of 000B) indicates the general-purpose registers EAX, AX or AL, MMX register MM0, or
XMM register XMM0. Which of these five registers is used is determined by the opcode byte
and the operand-size attribute, which select either the EAX register (32 bits) or AX register (16
bits).

The second and third columns in Tables 2-1 and 2-2 gives the binary encodings of the Mod and
R/M fields in the ModR/M byte, respectively, required to obtain the associated effective address
listed in the first column. All 32 possible combinations of the Mod and R/M fields are listed.

Across the top of Tables 2-1 and 2-2, the eight possible values of the 3-bit Reg/Opcode field are
listed, in decimal (sixth row from top) and in binary (seventh row from top). The seventh row is
labeled “REG=”, which represents the use of these 3 bits to give the location of a second
operand, which must be a general-purpose, MMX, or XMM register. If the instruction does not
require a second operand to be specified, then the 3 bits of the Reg/Opcode field may be used as
an extension of the opcode, which is represented by the sixth row, labeled “/digit (Opcode)”. The
five rows above give the byte, word, and doubleword general-purpose registers, the MMX regis-
ters, and the XMM registers that correspond to the register numbers, with the same assignments
as for the R/M field when Mod field encoding is 11B. As with the R/M field register options,
which of the five possible registers is used is determined by the opcode byte along with the
operand-size attribute.

The body of Tables 2-1 and 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”)
contains a 32 by 8 array giving all of the 256 values of the ModR/M byte, in hexadecimal. Bits
3, 4 and 5 are specified by the column of the table in which a byte resides, and the row specifies
bits 0, 1 and 2, and also bits 6 and 7.

2-5

INSTRUCTION FORMAT

NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-
tive addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added
to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-
extended and added to the index.

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP1

EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[BX+SI]
[BX+DI]
[BP+SI]
[BP+DI]
[SI]
[DI]
disp162

[BX]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[BX+SI]+disp83

[BX+DI]+disp8
[BP+SI]+disp8
[BP+DI]+disp8
[SI]+disp8
[DI]+disp8
[BP]+disp8
[BX]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[BX+SI]+disp16
[BX+DI]+disp16
[BP+SI]+disp16
[BP+DI]+disp16
[SI]+disp16
[DI]+disp16
[BP]+disp16
[BX]+disp16

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM1/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AHMM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
EQ
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

2-6

INSTRUCTION FORMAT

NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows ModR/M byte (or the SIB byte if one
is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows ModR/M byte (or the SIB byte if one
is present) and that is sign-extended and added to the index.

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte
r8(/r)
r16(/r)
r32(/r)
mm(/r)
xmm(/r)
/digit (Opcode)
REG =

AL
AX
EAX
MM0
XMM0
0
000

CL
CX
ECX
MM1
XMM1
1
001

DL
DX
EDX
MM2
XMM2
2
010

BL
BX
EBX
MM3
XMM3
3
011

AH
SP
ESP
MM4
XMM4
4
100

CH
BP
EBP
MM5
XMM5
5
101

DH
SI
ESI
MM6
XMM6
6
110

BH
DI
EDI
MM7
XMM7
7
111

Effective
Address Mod R/M Value of ModR/M Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
[--][--]1

disp322

[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
01
02
03
04
05
06
07

08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37

38
39
3A
3B
3C
3D
3E
3F

[EAX]+disp83

[ECX]+disp8
[EDX]+disp8
[EBX]+disp8
[--][--]+disp8
[EBP]+disp8
[ESI]+disp8
[EDI]+disp8

01 000
001
010
011
100
101
110
111

40
41
42
43
44
45
46
47

48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67

68
69
6A
6B
6C
6D
6E
6F

70
71
72
73
74
75
76
77

78
79
7A
7B
7C
7D
7E
7F

[EAX]+disp32
[ECX]+disp32
[EDX]+disp32
[EBX]+disp32
[--][--]+disp32
[EBP]+disp32
[ESI]+disp32
[EDI]+disp32

10 000
001
010
011
100
101
110
111

80
81
82
83
84
85
86
87

88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97

98
99
9A
9B
9C
9D
9E
9F

A0
A1
A2
A3
A4
A5
A6
A7

A8
A9
AA
AB
AC
AD
AE
AF

B0
B1
B2
B3
B4
B5
B6
B7

B8
B9
BA
BB
BC
BD
BE
BF

EAX/AX/AL/MM0/XMM0
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

11 000
001
010
011
100
101
110
111

C0
C1
C2
C3
C4
C5
C6
C7

C8
C9
CA
CB
CC
CD
CE
CF

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
DA
DB
DC
DD
DE
DF

E0
E1
E2
E3
E4
E5
E6
E7

E8
E9
EA
EB
EC
ED
EE
EF

F0
F1
F2
F3
F4
F5
F6
F7

F8
F9
FA
FB
FC
FD
FE
FF

2-7

INSTRUCTION FORMAT

Table 2-3 is organized similarly to Tables 2-1 and 2-2, except that its body gives the 256 possible
values of the SIB byte, in hexadecimal. Which of the 8 general-purpose registers will be used as
base is indicated across the top of the table, along with the corresponding values of the base field
(bits 0, 1 and 2) in decimal and binary. The rows indicate which register is used as the index
(determined by bits 3, 4 and 5) along with the scaling factor (determined by bits 6 and 7).

NOTE:

1. The [*] nomenclature means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the
following addressing modes:

disp32[index] (MOD=00).
disp8[EBP][index](MOD=01).
disp32[EBP][index](MOD=10).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32
Base =
Base =

EAX
0
000

ECX
1
001

EDX
2
010

EBX
3
011

ESP
4
100

[*]
5
101

ESI
6
110

EDI
7
111

Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

[EAX]
[ECX]
[EDX]
[EBX]
none
[EBP]
[ESI]
[EDI]

00 000
001
010
011
100
101
110
111

00
08
10
18
20
28
30
38

01
09
11
19
21
29
31
39

02
0A
12
1A
22
2A
32
3A

03
0B
13
1B
23
2B
33
3B

04
0C
14
1C
24
2C
34
3C

05
0D
15
1D
25
2D
35
3D

06
0E
16
1E
26
2E
36
3E

07
0F
17
1F
27
2F
37
3F

[EAX*2]
[ECX*2]
[EDX*2]
[EBX*2]
none
[EBP*2]
[ESI*2]
[EDI*2]

01 000
001
010
011
100
101
110
111

40
48
50
58
60
68
70
78

41
49
51
59
61
69
71
79

42
4A
52
5A
62
6A
72
7A

43
4B
53
5B
63
6B
73
7B

44
4C
54
5C
64
6C
74
7C

45
4D
55
5D
65
6D
75
7D

46
4E
56
5E
66
6E
76
7E

47
4F
57
5F
67
6F
77
7F

[EAX*4]
[ECX*4]
[EDX*4]
[EBX*4]
none
[EBP*4]
[ESI*4]
[EDI*4]

10 000
001
010
011
100
101
110
111

80
88
90
98
A0
A8
B0
B8

81
89
91
89
A1
A9
B1
B9

82
8A
92
9A
A2
AA
B2
BA

83
8B
93
9B
A3
AB
B3
BB

84
8C
94
9C
A4
AC
B4
BC

85
8D
95
9D
A5
AD
B5
BD

86
8E
96
9E
A6
AE
B6
BE

87
8F
97
9F
A7
AF
B7
BF

[EAX*8]
[ECX*8]
[EDX*8]
[EBX*8]
none
[EBP*8]
[ESI*8]
[EDI*8]

11 000
001
010
011
100
101
110
111

C0
C8
D0
D8
E0
E8
F0
F8

C1
C9
D1
D9
E1
E9
F1
F9

C2
CA
D2
DA
E2
EA
F2
FA

C3
CB
D3
DB
E3
EB
F3
FB

C4
CC
D4
DC
E4
EC
F4
FC

C5
CD
D5
DD
E5
ED
F5
FD

C6
CE
D6
DE
E6
EE
F6
FE

C7
CF
D7
DF
E7
EF
F7
FF

2-8

INSTRUCTION FORMAT

